JEE (ADVANCED) 2024 PAPER-2

[PAPER WITH SOLUTION]

HELD ON SUNDAY $26^{\text {TH }}$ MAY 2024

PHYSICS

SECTION 1 (Maximum Marks :12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
[:Q.1] A region in the form of an equilateral triangle (in $x-y$ plane) of height L has a uniform magnetic field \vec{B} pointing in the +z-direction. A conducting loop $P Q R$, in the form of an equilateral triangle of the same height L, is placed in the $x-y$ plane with its vertex P at $x=0$ in the orientation shown in the figure. At $t=0$, the loop starts entering the region of the magnetic field with a uniform velocity \vec{v} along the +x-direction. The plane of the loop and its orientation remain unchanged throughout its motion.

Which of the following graph best depicts the variation of the induced emf (E) in the loop as a function of the distance (x) starting from $x 0$?
[:A]

[:B]

[:C]

[:D]

[:ANS] A
[SOLN]

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

For $0<x<L$
$\left|\varepsilon_{\text {ind }}\right|=B(a b) \vee$,as x increases length ab increases $\left|\varepsilon_{\text {ind }}\right|$ increases
For $L<x<\frac{3 L}{2}$
$\varepsilon_{\text {ind }}$ will become zero
Then sign of $\varepsilon_{\text {ind }}$ will change
[:Q.2] A particle of mass m is under the influence of the gravitational field of a body of mass M (>> $\mathrm{m})$. The particle is moving in a circular orbit of radius r_{0} with time period To around the mass M. Then, the particle is subjected to an additional central force, corresponding to the potential energy $V_{C}(r)=m \alpha / r^{3}$, where α is a positive constant of suitable dimensions and r is the distance from the center of the orbit. If the particle moves in the same circular orbit of radius r_{0} in the combined gravitational potential due to M and $V_{c}(r)$, but with a new time period T_{1}, then $\left(\mathrm{T}_{1}{ }^{2}-\mathrm{T}_{0}{ }^{2}\right) / \mathrm{T}_{1}{ }^{2}$ is given by
[G is the gravitational constant.]
[:A] $\frac{3 \alpha}{\mathrm{GMr}_{0}^{2}}$
[:B] $\frac{\alpha}{2 \mathrm{GMr}_{0}^{2}}$
[:C] $\frac{\alpha}{\mathrm{GMr}_{0}^{2}}$
[:D] $\frac{2 \alpha}{\mathrm{GMr}_{0}^{2}}$
[:ANS] A

$\frac{\mathrm{GMm}}{\mathrm{r}_{0}^{2}}=\mathrm{mr}_{0} \omega_{0}^{2}$
$\omega_{0}^{2}=\frac{\mathrm{GM}}{\mathrm{r}_{0}^{3}}$
$U(r)=\frac{m \alpha}{r^{3}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{f}_{\mathrm{c}}=-\frac{\mathrm{dU}}{\mathrm{dr}}=\frac{3 \mathrm{~m} \alpha}{\mathrm{r}^{4}} \\
& \Rightarrow \frac{\mathrm{GMm}}{\mathrm{r}_{0}^{2}}-\frac{3 \mathrm{~m} \alpha}{\mathrm{r}_{0}^{4}}=\mathrm{mr}_{0} \omega_{1}^{2} \\
& \omega_{1}^{2}=\frac{\mathrm{GM}}{\mathrm{r}_{0}^{3}}-\frac{3 \alpha}{\mathrm{r}_{0}^{5}} \\
& \frac{\mathrm{~T}_{1}^{2}-\mathrm{T}_{0}^{2}}{\mathrm{~T}_{1}^{2}}=\frac{\left(\frac{2 \pi}{\omega_{1}}\right)^{2}-\left(\frac{2 \pi}{\omega_{0}}\right)^{2}}{\left(\frac{2 \pi}{\omega_{1}}\right)^{2}}=\frac{\omega_{0}^{2}-\omega_{1}^{2}}{\omega^{2}} \\
& =\frac{\frac{\mathrm{GM}}{\mathrm{r}_{0}^{3}}-\left(\frac{\mathrm{GM}}{\mathrm{r}_{0}^{3}}-\frac{3 \alpha}{\mathrm{r}_{0}^{5}}\right)}{\frac{\mathrm{GM}}{\mathrm{r}_{0}^{3}}} \\
& =\frac{3 \alpha}{\mathrm{GMr}_{0}^{2}}
\end{aligned}
$$

[:Q.3] A metal target with atomic number $Z=46$ is bombarded with a high energy electron beam. The emission of X-rays from the target is analyzed. The ratio r of the wavelengths of the K_{α}-line and the cut-off is found to be $\mathrm{r}=2$. If the same electron beam bombards another metal target with $Z=41$, the value of r will be
[:A] 2.53
[:B] 1.27
[:C] 2.24
[:D] 1.58
[:ANS] A
[SOLN] $v=a^{2}(z-b)^{2}$, for k_{α}
$\frac{c}{\lambda}=a^{2}(z-b)^{2}, a=\sqrt{\frac{3 R C}{4}}$
$b \simeq 1$
$\lambda_{\mathrm{k}_{\alpha}} \propto \frac{1}{(z-1)^{2}}$
$\frac{\left(\lambda_{\mathrm{k}_{\alpha}}\right)_{41}}{\left(\lambda_{\mathrm{k}_{\alpha}}\right)_{46}}=2 \times \frac{(46-1)^{2}}{(41-1)^{2}}$
$=2.53$
Cut off wave length will be same in both cases as the beam is same
[:Q.4] A thin stiff insulated metal wire is bent into a circular loop with its two ends extending tangentially from the same point of the loop. The wire loop has mass m and radius r and it is in a uniform vertical magnetic field B_{0}, as shown in the figure. Initially, it hangs vertically downwards, because of acceleration due to gravity g , on two conducting supports at P and Q . When a current I is passed through the loop, the loop turns about the line PQ by an angle θ given by

[:A] $\quad \tan \theta=\pi \mathrm{rlB} \mathrm{B}_{0} /(\mathrm{mg})$
[:B] $\quad \tan \theta=2 \pi r l B_{0} /(\mathrm{mg})$
[:C] $\tan \theta=\pi \mathrm{rl} \mathrm{B}_{0} /(2 \mathrm{mg})$
[:D] $\quad \tan \theta=\mathrm{mg} /\left(\pi \mathrm{rlB} \mathrm{B}_{0}\right)$
[:ANS] A
[SOLN]

For equilibrium $\tau_{B}=\tau_{m g}$
$\mathrm{i} \times \pi \mathrm{r}^{2} \mathrm{~B} \sin (90-\theta)=m g r \sin \theta$
$\tan \theta=\frac{\pi \mathrm{irB}}{\mathrm{mg}}$

SECTION 2 (Maximum Marks :12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correctoption;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing $\operatorname{ONLY}(\mathrm{A})$ will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
[:Q.5] A small electric dipole $\overrightarrow{\mathrm{p}}_{0}$, having a moment of inertia / about its center, is kept at a distance r from the center of a spherical shell of radius R. The surface charge density σ is uniformly distributed on the spherical shell. The dipole is initially oriented at a small angle θ as shown in the figure. While staying at a distance r, the dipole is free to rotate about its center.

If released from rest, then which of the following statement(s) is (are) correct?
[ε_{0} is the permittivity of free space.]
[:A] The dipole will undergo small oscillations at any finite value of r.
$[: B] \quad$ The dipole will undergo small oscillations at any finite value of $r>R$.
[:C] The dipole will undergo small oscillations with an angular frequency of

$$
\sqrt{\frac{2 \sigma p_{0}}{\varepsilon_{0} l}} \text { at } r=2 \mathrm{R}
$$

[:D] The dipole will undergo small oscillations with an angular frequency of

$$
\sqrt{\frac{\sigma p_{0}}{100 \varepsilon_{0}}} \text { at } r=10 R
$$

[:ANS] B, D
[SOLN]

Restoring torque
$\tau=-p_{0} E \sin \theta$ for small θ
$\tau=-\left(P_{0} E\right) \theta \propto-\theta$
$\tau=-P_{0} \mathrm{E} \theta$
$\because \quad \tau=1 \alpha$
For angular S.H.M
$\alpha=-\omega^{2} \theta$
$\tau=-\mid \omega^{2} \theta$
From (1) and (2)
$-P_{0} E \theta=-l \omega^{2} \theta$
$\omega=\sqrt{\frac{P_{0} \mathrm{E}}{\mathrm{l}}}$
\Rightarrow Angular SHM
$\left.\omega=\sqrt{\frac{p_{0} E}{I}}=\sqrt{\frac{p_{0} \sigma R^{2}}{I \epsilon_{0} r^{2}}} \right\rvert\, E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}, q=\sigma \times 4 \pi R^{2}$
For $r=10 R$
$\omega=\sqrt{\frac{\sigma p_{0}}{100 \epsilon_{0} \mathrm{I}}}$
[:Q.6] A table tennis ball has radius $(3 / 2) \times 10^{-2} \mathrm{~m}$ and mass $(22 / 7) \times 10^{-3} \mathrm{~kg}$. It is slowly pushed down into a swimming pool to a depth of $d=0.7 \mathrm{~m}$ below the water surface and then released from rest. It emerges from the water surface at speed v, without getting wet, and rises up to a height H. Which of the following option(s) is (are) correct?
[Given: $\pi=22 / 7, \mathrm{~g}=10 \mathrm{~m} \mathrm{~s}^{-2}$, density of water $=1 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$,
viscosity of water $=1 \times 10^{-3} \mathrm{~Pa}$-s.]
[:A] The work done in pushing the ball to the depth d is 0.077 J .
[:B] If we neglect the viscous force in water, then the speed $v=7 \mathrm{~m} / \mathrm{s}$.
[:C] If we neglect the viscous force in water, then the height $\mathrm{H}=1.4 \mathrm{~m}$.
[:D] The ratio of the magnitudes of the net force excluding the viscous force to the maximum viscous force in water is 500/9.
[:ANS] A, B, D
[SOLN] Use work energy theorem
(A) $\mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\text {up }}+\mathrm{W}_{\text {ext }}+\mathrm{W}_{\text {vis }}=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}$
$W_{\text {ext }}=-W_{g}-W_{\text {up }}$
$=-\operatorname{Mgd}-(-\mathrm{V} \rho g \mathrm{~d})$
$=g d\left(\frac{4}{3} \pi r^{3} \mathrm{~J}-\mathrm{M}\right)$
0.077 J
(B) Again using work energy theorem

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{g}}+\mathrm{W}_{\mathrm{up}}=\frac{1}{2} \mathrm{mv}^{2} \\
& \Rightarrow \mathrm{mgd}+\mathrm{V} \rho \mathrm{dg}=\frac{1}{2} \mathrm{mv}^{2} \\
& \Rightarrow \mathrm{~V}=7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(C) $\mathrm{H}=\frac{\mathrm{v}^{2}}{2 \mathrm{~g}}$
(D) $\frac{\mathrm{F}_{\text {up }}-\mathrm{Mg}}{6 \pi \eta r v}$
[:Q.7] A positive, singly ionized atom of mass number AM is accelerated from rest by the voltage 192 V . Thereafter, it enters a rectangular region of width w with magnetic field $\overrightarrow{\mathrm{B}}_{0}=0.1 \hat{\mathrm{k}}$

Tesla, as shown in the figure. The ion finally hits a detector at the distance x below its starting trajectory.
[Given: Mass of neutron/proton $=(5 / 3) \times 10^{-27} \mathrm{~kg}$, charge of the electron $=1.6 \times 10^{-19} \mathrm{C}$.]

Which of the following option(s) is (are) correct?
[:A] The value of x for H^{+}ion is 4 cm .
[:B] The value of x for an ion with $A_{M}=144$ is 48 cm .
[:C] For detecting ions with $1 \leq A_{M} \leq 196$, the minimum height ($x_{1}-x_{0}$) of the detector is 55 cm .
[:D] The minimum width w of the region of the magnetic field for detecting ions with $A_{M}=196$ is 56 cm.
[:ANS] A, B
[:SOLN]

$$
\begin{aligned}
x & =2 R \\
& =\frac{2 \sqrt{2 q v_{0} m}}{q B} \\
x & =\sqrt{\frac{8 v_{0} m}{q B^{2}}}
\end{aligned}
$$

(A) for $\mathrm{H}^{+} \mathrm{q}=1.6 \times 10^{-19}$

$$
\mathrm{m}=\frac{5}{3} \times 10^{-27}
$$

$$
\Rightarrow x=4 \mathrm{~cm}
$$

(B) for $A_{m}=144, m=\frac{5}{3} \times 10^{-27} \times 144$
$\mathrm{q}=1.6 \times 10^{-16}$
$x=48 \mathrm{~cm}$
(C) for $\mathrm{Am}=1 \quad \mathrm{x}=4 \mathrm{~cm}$

For $A m=196 x,=56 \mathrm{~cm}$
$x_{1}-x_{0}=51 \mathrm{~cm}$
(D) for $\mathrm{Am}=196, \mathrm{R}=28 \mathrm{~cm}$

SECTION 3 (Maximum Marks :24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
[:Q.8] The dimensions of a cone are measured using a scale with a least count of 2 mm . The diameter of the base and the height are both measured to be 20.0 cm . The maximum percentage error in the determination of the volume is \qquad .
[:ANS] 3
[:SOLN] $V=\frac{1}{3} \pi\left(\frac{\mathrm{D}}{4}\right)^{2} \mathrm{~h}$
$\% \mathrm{~V}=2 \% \mathrm{D}+\% \mathrm{~h}$
$=\left(2 \times \frac{\Delta \mathrm{D}}{\mathrm{D}}+\frac{\Delta \mathrm{h}}{\mathrm{h}}\right) \times 100 \%$
$\mathrm{D}=200 \mathrm{~mm}$
$\mathrm{h}=200 \mathrm{~mm}$
$\Delta \mathrm{D}=\Delta \mathrm{h}=2 \mathrm{~mm}$
$=\left(2 \times \frac{2}{200}+\frac{2}{200}\right) \times 100 \%$
= 3%
[:Q.9] A ball is thrown from the location $\left(x_{0}, y_{0}\right)=(0,0)$ of a horizontal playground with an initial speed v_{0} at an angle θ_{0} from the $+x$-direction. The ball is to hit by a stone, which is thrown at the same time from the location $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(\mathrm{L}, 0)$. The stone is thrown at an angle (180- θ_{1})
from the $+x$-direction with a suitable initial speed. For a fixed v_{0}, when $\left(\theta_{0}, \theta_{1}\right)=\left(45^{\circ}, 45^{\circ}\right)$, the stone hits the ball after time T_{1}, and when $\left(\theta_{0}, \theta_{1}\right)=\left(60^{\circ}, 30^{\circ}\right)$, it hits the ball after time T_{2}. In such a case, $\left(T_{1} / T_{2}\right)^{2}$ is \qquad .
[:ANS] 2
[:SOLN]

For $\left(\theta_{0}, \theta_{1}\right)=\left(45^{\circ}, 45^{\circ}\right)$
$u=v_{0}$ (By equating y-coordinate of particles)
ℓ along x -axis
$\frac{\mathrm{v}_{0}}{\sqrt{2}} \times 2 \mathrm{~T}_{1}=\mathrm{L} \quad \Rightarrow \mathrm{T}_{1}=\frac{\mathrm{L}}{\sqrt{2} \mathrm{v}_{0}}$
For $\left(\theta_{0}, \theta_{1}\right)=\left(60^{\circ}, 30^{\circ}\right)$
$u=\sqrt{3} v_{0}$
and again along x-axis
$\left[\frac{\mathrm{v}_{0}}{2}+\frac{\left(\sqrt{3} \mathrm{v}_{0}\right) \sqrt{3}}{2}\right] \mathrm{T}_{2}=\mathrm{L} \Rightarrow\left(\frac{4 \mathrm{v}_{0}}{2}\right) \mathrm{T}_{2}=\mathrm{L}$
$\Rightarrow \quad \mathrm{T}_{2}=\frac{\mathrm{L}}{2 \mathrm{v}_{0}}$
Now $\left(\frac{T_{1}}{T_{2}}\right)^{2}=2$
[:Q.10] A charge is kept at the central point P of a cylinder region. The two edges subtend a halfangle θ at P, as shown in the figure. When $\theta=30^{\circ}$, then the electric flux through the curved surface of the cylinder is Φ. If $\theta=60^{\circ}$, then the electric flux through the curved surface becomes Φ / \sqrt{n}, where the value of n is \qquad

[:ANS] 3
[:SOLN] $\phi=\frac{q}{\epsilon_{0}}-2 \frac{q}{2 \epsilon_{0}}\left(1-\cos 30^{\circ}\right)=\frac{q}{\epsilon_{0}}\left(\frac{\sqrt{3}}{2}\right)$
$\phi^{\prime}=\frac{\mathrm{q}}{\epsilon_{0}}-2 \frac{\mathrm{q}}{2 \epsilon_{0}}\left(1-\frac{1}{2}\right)=\frac{\mathrm{q}}{2 \epsilon_{0}}=\phi / \sqrt{3}$
$\therefore \mathrm{n}=3$
[:Q.11] Two equilateral-triangular prisms P_{1} and P_{2} are kept with their sides parallel to each other, in vacuum, as shown in the figure. A light ray enters prism P_{1} at an angle of incidence θ such that the outgoing ray undergoes minimum deviation in prism P_{2}. If the respective refractive indices of P_{1} and P_{2} are $\sqrt{\frac{3}{2}}$ and $\sqrt{3}$, then $\theta=\sin ^{-1}\left[\sqrt{\frac{3}{2}} \sin \left(\frac{\pi}{\beta}\right)\right]$, where the value of β is \qquad .

[:ANS] 12
[:SOLN]

At face $P Q$ using snell's law
$1 \sin i=\sqrt{3} \sin 30^{\circ}$ (for minimum deviation $r_{1}=r_{2}=\frac{A}{2}=30^{\circ}$)
$\Rightarrow \mathrm{i}=60^{\circ}$
At force AC again using snell's law
$\sqrt{\frac{3}{2}} \sin _{2}=1 \sin 60^{\circ}$
$\Rightarrow r_{2}=45^{\circ}$

Hence, $r_{1}=15^{\circ}=\frac{\pi}{12}$
At face $A B$ using snell's law
$\sin \theta=\sqrt{\frac{3}{2}} \sin \frac{\pi}{12}$
$\theta=\sin ^{-1}\left[\sqrt{\frac{3}{2}} \sin \frac{\pi}{12}\right]$
$\therefore \beta=12$
[:Q.12] An infinitely long thin wire, having a uniform charge density per unit length of $5 \mathrm{nC} / \mathrm{m}$, is passing through a spherical shell of radius 1 m , as shown in the figure. A 10 nC charge is distributed uniformly over the spherical shell. If the configuration of the charges remains static, the magnitude of the potential difference between points P and R, in Volt, is \qquad .
[Given: In SI units $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}, \ln 2=0.7$. Ignore the area pierced by the wire]

[:ANS] 171
[:SOLN] Due to spherical shell,
$V_{P}-V_{R}=\frac{k Q_{\text {shell }}}{R}-\frac{k Q_{\text {shell }}}{2 R}$
$=\frac{9 \times 10^{9} \times 10 \times 10^{-9}}{2 \times 1}=45$ Volt
Due to wire

$$
\begin{aligned}
& V_{P}-V_{R}=\frac{1}{\pi \epsilon_{0}} \ln 2 \\
& =5 \times 10^{-9} \times 9 \times 10^{9} \times 4 \times 0.7=126 \text { Volt } \\
& \therefore \text { Total } \mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{R}}=126+45=171 \text { Volt. }
\end{aligned}
$$

[:Q.13] A spherical soap bubble inside an air chamber at pressure $P_{0}=10^{5} \mathrm{~Pa}$ has a certain radius so that the excess pressure inside the bubble is $\Delta \mathrm{P}=144 \mathrm{~Pa}$. Now, the chamber pressure is reduced to $8 \mathrm{P}_{0} / 27$ so that the bubble radius and its excess pressure change. In this process, all the temperatures remain unchanged. Assume air to be an ideal gas and the excess pressure $\Delta \mathrm{P}$ in both the cases to be much smaller than the chamber pressure. The new excess pressure $\Delta \mathrm{P}$ in Pa is \qquad .
[:ANS] 96
[:SOLN] Let old and new radii are r and r^{\prime} respectively.

$$
\begin{aligned}
& 144=\frac{4 S}{r} \Rightarrow r=\frac{4 S}{144} \\
& \Delta P=\frac{4 S}{r^{\prime}} \Rightarrow r^{\prime}=\frac{4 S}{\Delta P}
\end{aligned}
$$

Now for soap bubble using $P_{1} V_{1}=P_{2} V_{2}$

$$
\left(P_{0}+144\right)\left(\frac{4 S}{144}\right)^{3}=\left(\frac{8 P_{0}}{27}+\Delta P\right)\left(\frac{4 S}{\Delta P}\right)^{3}
$$

On solving the equation -
$\Delta \mathrm{P}=96$ Pascal

SECTION 4 (Maximum Marks :12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place; Zero Marks : 0 In all other cases.

Passage-1

In a Young's double slit experiment, each of the two slits A and B, as shown in the figure, are oscillating about their fixed center and with a mean separation of 0.8 mm . The distance between the slits at time t is given by $\mathrm{d}=(0.8+0.04 \sin \omega \mathrm{t}) \mathrm{mm}$, where $\omega=0.08 \mathrm{rad} \mathrm{s}^{-1}$. The distance of the screen from the slits is 1 m and the wavelength of the light used to illuminate
the slits is $6000 \AA$. The interference pattern on the screen changes with time, while the central bright fringe (zeroth fringe) remains fixed at point O.

[:Q.14] The $8^{\text {th }}$ bright fringe above point O oscillates with time between two extreme positions. The separation between these two extreme positions, in micrometer ($\mu \mathrm{m}$), is \qquad .
[:ANS] 600
[:SOLN] Position of $8^{\text {th }}$ maxima from O ,
$y=8\left(\frac{\lambda D}{d}\right)$
$y=60 \times 10^{-4}[1-0.05 \sin \omega t]$
Velocity of $8^{\text {th }}$ maxima

$$
\begin{aligned}
v & =\frac{d y}{d t}=60 \times 10^{-4}[-0.05 \omega \cos \omega t] \\
& =-24 \cos \omega t \mu \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Separation b/w two extremes of $8^{\text {th }}$ maxima $=60 \times 10^{-4} \times 0.1 \mathrm{~m}=600 \mu \mathrm{~m}$
[:Q.15] The maximum speed in $\mu \mathrm{m} / \mathrm{s}$ at which the $8^{\text {th }}$ bright fringe will move is \qquad .

[:ANS]
 24

[:SOLN] Position of $8^{\text {th }}$ maxima from O ,
$y=8\left(\frac{\lambda D}{d}\right)$
$y=60 \times 10^{-4}[1-0.05 \sin \omega t]$
Velocity of $8^{\text {th }}$ maxima
$v=\frac{\mathrm{dy}}{\mathrm{dt}}=60 \times 10^{-4}[-0.05 \omega \cos \omega \mathrm{t}]$

$$
=-24 \cos \omega \mathrm{t} \mu \mathrm{~m} / \mathrm{s}
$$

Maxima speed of $8^{\text {th }}$ maxima $\mathrm{V}_{\max }=24 \mu \mathrm{~m} / \mathrm{s}$

Passage-2

Two particles, 1 and 2, each of mass m, are connected by a massless spring, and are one a horizontal frictionless plane, as shown in the figure. Initially, the two particles, with their center of mass at x_{0}, are oscillating with amplitude a and angular frequency ω. This their positions at time t are given by $\mathrm{x}_{1}(\mathrm{t})=\left(\mathrm{x}_{0}+\mathrm{d}\right)+\mathrm{a} \sin \omega \mathrm{t}$ and $\mathrm{x}_{2}(\mathrm{t})=\left(\mathrm{x}_{0}-\mathrm{d}\right)-\mathrm{a} \sin \omega \mathrm{t}$, respectively, where $d>2 a$. Particle 3 of mass m moves towards this system with speed $u_{0}=a \omega / 2$, and undergoes instantaneous elastic collision with particle, 2 , at time t_{0}. Finally, particles 1 and 2 acquire a center of mass speed v_{cm} and oscillate with amplitude b and the same angular frequency ω.

[:Q.16] If the collision occurs at time $\mathrm{t}_{0}=0$, the value of $v_{\mathrm{cm}} /(\mathrm{a} \omega)$ will be \qquad .
[:ANS] 0.75
[:SOLN]

$V_{c m}=\frac{3}{4} a \omega$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{cm}}}{\mathrm{a} \omega}=\frac{3}{4}=0.75$
[:Q.17] If the collision occurs at time $t_{0}=\pi /(2 \omega)$, then the value of $4 \mathrm{~b}^{2} / \mathrm{a}^{2}$ will be \qquad -
[:ANS] 4.25
[:SOLN] at $\mathrm{t}=\frac{\pi}{2 \omega}$ balls 1 and 2 will be at their extreme positions i.e. at rest.
Using COE for system of balls 1 and 2 after collision of ball 3 with ball 2 :

$$
\begin{aligned}
& \frac{1}{2} m\left(\frac{a \omega}{2}\right)^{2}+\frac{1}{2} m \omega^{2}(2 a)^{2}=\frac{1}{2} m \omega^{2}(2 b)^{2} \\
& \frac{17 a^{2}}{8}=2 b^{2} \\
& \Rightarrow \frac{4 b^{2}}{a^{2}}=\frac{17}{4}=4.25
\end{aligned}
$$

