entors Eduservo

 JEE (ADVANCED) 2024 PAPER-2

 JEE (ADVANCED) 2024 PAPER-2 [PAPER WITH SOLUTION]

 [PAPER WITH SOLUTION]}

HELD ON SUNDAY 26THMAY 2024

CHEMI STRY

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
[:Q.1] According to Bohr's model, the highest kinetic energy is associated with the electron in the [:A] first orbit of H atom
[:B] first orbit of He^{+}
[:C] second orbit of He^{+}
[:D] second orbit of Li^{2+}
[:ANS] B

In Bohr Model
K.E. $=13.6 \mathrm{eV} \cdot \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$
a) $\mathrm{He}^{+}, 1=\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}=4$ (Maximum)
b) $\mathrm{He}^{+}, 2=\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}=1$
c) $\mathrm{Li}^{2+}, 2=\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}=\frac{9}{4}$
[:Q.2] In a metal deficient oxide sample, $\mathrm{MxY}_{2} \mathrm{O}_{4}$ (M and Y are metals), M is present in both +2 and +3 oxidation states and Y is in +3 oxidation state. If the fraction of M^{2+} ions present in M is $\frac{1}{3}$, the value of X is \qquad .
[:A] 0.25
[:B] 0.33
[:C] 0.67
[:D] 0.75
[ANS] D
[:SOLN] $\quad \mathrm{M}_{\mathrm{x}} \mathrm{Y}_{2} \mathrm{O}_{4}$

$$
\mathrm{M}^{2+} \quad \& \quad \mathrm{M}^{3+}
$$

$\left(\frac{\mathrm{x}}{3}\right) \quad\left(\frac{2 \mathrm{x}}{3}\right)$
Net charge on compound $=0$
$\left(\frac{x}{3}\right) 2+\left(\frac{2 x}{3}\right) \cdot 3+2 \times 3+4(-2)=0$
$\frac{8 x}{3}+6-8=0$
$\frac{8 x}{3}=2$
$x=\frac{3}{4}=0.75$
[:Q.3] In the following reaction sequence, the major product Q is
L-Glucose

$$
\xrightarrow[\substack{\text { ii) } \mathrm{Cr}_{2} \mathrm{O}_{3}, 775 \mathrm{~K}, 10-20 \mathrm{~atm}}]{\text { i) } \mathrm{HI}, \Delta}
$$

[:A]

[:B]

[:C]

[:ANS] D
[:SOLN]

(BHC)
[:Q.4] The species formed on fluorination of phosphorus pentachloride in a polar organic solvent are
[:A] $\left[\mathrm{PF}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]$
[:B] $\quad\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-}$and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]$
[:C] PF_{3} and PCl_{3}
[:D] PF_{5} and PCl_{3}
[:ANS] B
by F atoms. ${ }^{(93)}$ These compounds are obtained by addition of halogen to the appropriate phosphorus(III) chlorofluoride, but if PCl_{5} is fluorinated in a polar solvent, ionic isomers are formed, e.g. $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-}$(colourless crystals, subl 175°) and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$(white crystals, subl 135° with decomposition). The crystalline hemifluoride $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{5} \mathrm{~F}\right]^{-}$has also been identified. The analogous parallel

SECTION 2 (Maximum Marks: 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.
[:Q.5] An aqueous solution of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is electrochemically oxidized by O 2 , thereby releasing chemical energy in the form of electrical energy. One of the products generated from the electrochemical reaction is $\mathrm{N}_{2}(\mathrm{~g})$.

Choose the correct statements(s) about the process
[:A] OH^{-}ions react with $\mathrm{N}_{2} \mathrm{H}_{4}$ at the anode to form $\mathrm{N}_{2}(\mathrm{~g})$ and water, releasing 4 electrons to the anode.
[:B] At the cathode, $\mathrm{N}_{2} \mathrm{H}_{4}$ breaks to $\mathrm{N}_{2}(\mathrm{~g})$ and nascent hydrogen released at the electrode reacts with oxygen to form water.
[:C] At the cathode, molecular oxygen gets converted to OH^{-}
[:D] Oxides of nitrogen are major by-products of the electrochemical process.
[:ANS] A,C
[:SOLN] Anode: $\mathrm{N}_{2} \mathrm{H}_{4}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
Cathode: $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 \mathrm{e} \longrightarrow 4 \mathrm{OH}^{-}$

$$
\mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

[:Q.6] The options(s) with correct sequence of reagents for the conversion of P to Q is(are)

[:A] (i) Lindlar's catalyst, H_{2}; (ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; (iii) NaBH_{4}; (iv) $\mathrm{H}_{3} \mathrm{O}^{+}$
[:B] (i) Lindlar's catalyst, H_{2}; (ii) $\mathrm{H}_{3} \mathrm{O}^{+}$(iii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; (iv) NaBH_{4}
[:C] (i) NaBH_{4} (ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; (iii) $\mathrm{H}_{3} \mathrm{O}^{+}$(iv) Lindlar's catalyst, H_{2}
[:D] (i) Lindlar's catalyst, H_{2}; (ii) NaBH_{4}; (iii); $\mathrm{SnCl}_{2} / \mathrm{HCl}$ (iv) $\mathrm{H}_{3} \mathrm{O}^{+}$
[:ANS] ACD
[:SOLN]

[:Q.7] The compounds(s) having peroxide linkage is(are)
[:A] $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
[:B] $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
[:C] $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
[:D] $\mathrm{H}_{2} \mathrm{SO}_{5}$
[:ANS] B,D

SECTION 3 (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered; Zero Marks : 0 In all other cases.
[:Q.8] To form a complete monolayer of acetic acid on 1 g of charcoal, 100 mL of 0.5 M acetic acid was used. Some of the acetic acid remained unadsorbed. To neutralize the unadsorbed acetic acid, 40 mL of 1 M NaOH solution was required. If molecule of acetic acid occupies $\mathbf{P} \times 10^{-23} \mathrm{~m}^{2}$ surface area on charcoal, the value of P is \qquad .
[Use given data: Surface area of charcoal $=1.5 \times 10^{2} \mathrm{~m}^{2} \mathrm{~g}^{-1}$; Avogadro's number $\left.\left(\mathrm{N}_{\mathrm{A}}\right)=6.0 \times 10^{23} \mathrm{~mol}^{-1}\right]$
[:ANS] 2500
[:SOLN] m mole of Acetic acid remained $=40 \times 1=40$
m mole of Acetic acid given $=100 \times 0.5=50$
m mole of acetic acid adsorbed $=10$
No. of $\mathrm{CH}_{3} \mathrm{COOH}$ molecule adsorbed $=\frac{10}{1000} \times 6 \times 10^{23}$

$$
=6 \times 10^{21}
$$

Surface area available $=1.5 \times 10^{2} \mathrm{~m}^{2}$
$\Rightarrow \frac{\text { surface area }}{\text { no. of molecule }}=\frac{1.5 \times 10^{2}}{6 \times 10^{21}}=0.25 \times 10^{-19}=2500 \times 10^{-23} \mathrm{~m}^{2}$

$$
P=2500
$$

[:Q.9] Vessel-1 contains $w_{2} g$ of a non-volatile X dissolved in w_{1} of water. Vessel-2 contains $w_{2} g$ of another non-volatile solute \mathbf{Y} dissolved in $\mathrm{w}_{1} \mathrm{~g}$ of water. Both the vessels are at the same temperature and pressure. The molar mass of X is 80% of that of Y. The van't Hoff factor for X is 1.2 times of that of \mathbf{Y} for their respective concentrations.

The elevation of boiling point for solution in Vessel- 1 is \qquad \% of the solution in Vessel-2.
[:ANS] 150
[:SOLN]

$\begin{aligned} & w^{2} \mathrm{gx} \\ & \mathrm{w}_{1} \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & w_{2} g y \\ & w_{1} g \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Vessel 1 (T,P)	Vessel 2 (T,P)
$M_{X}=\frac{80}{100} M_{Y}$	
$\mathrm{i}_{\mathrm{x}}=1.2 \mathrm{i}_{\mathrm{y}}$	
$\frac{\Delta T_{b x}}{\Delta T_{b y}}=\frac{i_{x} \cdot k_{b} \cdot n_{x}}{i_{y} \cdot k_{b} \cdot n_{y}}\left(M_{H_{2} \mathrm{O}}\right)=\text { source }$	
$=1.2 \times \frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{M}_{\mathrm{x}}}\left(\mathrm{~m}_{\mathrm{x}}=\mathrm{m}_{\mathrm{y}}=\mathrm{w}_{2}\right)$	
$=1.2 \times \frac{100}{80}=\frac{12}{8}=\frac{3}{2}$	
$=1.5$	
$\Delta \mathrm{T}_{\mathrm{bx}}=0.5 \Delta \mathrm{~T}_{\mathrm{by}}$	
$\Delta T_{b x}=\frac{150}{100} \cdot \Delta T b y \Rightarrow \%=150$	

[:Q.10] For a double strand DNA, one strand in given below:

The amount of energy required to split the double strand DNA into two single strand is \qquad kcal mol ${ }^{-1}$.
[Given: Average energy per H-bond for A-T base pair $=1.0 \mathrm{kcal} \mathrm{mol}^{-1}$, G-C base pair $=1.5$ $\mathrm{kcal} \mathrm{mol}^{-1}$. Ignore electrostatic repulsion between the phosphate groups.]
[:ANS] 41

[:SOLN]

Total energy $=[B E H$-bond $A-T \times N o$ of $A=T$ pair $\times 2]+[B E H$-bond $G-C \times N o$. of $G=C$ pair $\times 3]$
$=[1 \times 7 \times 2]+[1.5 \times 6 \times 3]$
$=14+27$
$=41 \mathrm{kcal}$
[:Q.11] A sample initially contains only U-238 isotope of uranium. With time, some of the U-238 radioactively decay into $\mathrm{Pb}-206$ while the react of it remains undisintegrated. When the age of the sample is $\mathbf{P} \times 10^{8}$ years, the ratio of mass of $\mathrm{Pb}-206$ to that of $\mathrm{U}-238$ in the sample is found to be 7. The value of \mathbf{P} is \qquad .
[Given : Half-life of U -238 is 4.5×10^{9} years; $\log _{\mathrm{e}} 20.693$]
[:ANS] 143.56

	U^{238}	\longrightarrow	$\mathrm{~Pb}^{206}$
[:SOLN] t=0	N_{0}	0	
t	$\mathrm{N}_{0}-\mathrm{x}$		x

$A / q: \frac{m_{p b-206}}{m_{u}-238}=7$
$\frac{\frac{\mathrm{x}}{\mathrm{N}_{\mathrm{A}}} \cdot 206}{\left(\frac{\mathrm{~N}_{0}-\mathrm{x}}{\mathrm{N}_{\mathrm{A}}}\right) .238}=7$
$\frac{x}{N_{0-x}}=\frac{7 \times 238}{206}$
$\frac{x}{N_{0-x}}=8.08$
$8.08 \mathrm{~N}_{0}=9.08 \mathrm{x}$

$$
x=\frac{8.08}{9.08} N_{0}=\frac{N_{0}}{N_{0}-x}=\frac{N_{0}}{N_{0}-\frac{8.08}{9.08} N_{0}}=\frac{9}{1}
$$

$$
K t=2.303 \log \frac{N_{0}}{N_{0-x}}
$$

$$
\frac{0.693}{\left(4.5 \times 10^{9}\right)} . t=2.303 \log 9
$$

$$
\mathrm{t}=\frac{2.303 \times 2 \times 0.48 \times 4.5 \times 10^{9}}{0.693}=14.356 \times 10^{9}=143.56 \times 10^{8} \text { years }
$$

$$
P=143.56
$$

[:Q.12] Among $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{4-},\left[\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})\right], \mathrm{XeF}_{4},\left[\mathrm{PCl}_{4}\right]^{+},\left[\mathrm{PdCl}_{4}\right]^{2-},\left[\mathrm{ICl}_{4}\right]^{-},\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ and P 4 the total number of species with tetrahedral geometry is \qquad .

[:ANS] 4

[:SOLN] $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4}$ - squared palanar - dsp^{2}
$\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{No}\right]-$ Tetrahedral $-\mathrm{sp}^{3}$
XeF_{4} - octahdral - $\mathrm{sp}^{3} \mathrm{~d}^{2}$
PCl_{4}^{+}- Tetrahedral - sp3
PdCl_{4}^{2} - Square planar - dsp^{2}
ICl_{4}^{-}- octahedral - $\mathrm{sp}^{3} \mathrm{~d}^{2}$
[:Q.13] An organic compound \mathbf{P} having molecular formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$ gives ferric chloride test and does not have intramolecular hydrogen bond. The compound \mathbf{P} reacts with 3 equivalents of NaOH to produce oxime \mathbf{Q}. Treatment of \mathbf{P} with excess methyl iodide in the presence of KOH produces compound \mathbf{R} as the major product. Reaction of \mathbf{R} with excess iso-butylmagnesium bromide followed by treatment with $\mathrm{H}_{3} \mathrm{O}^{+}$gives compound \mathbf{S} as the major product.

The total number of methyl $\left(-\mathrm{CH}_{3}\right)$ groups(s) in compound S is \qquad .
[:ANS] 12

[:SOLN]

Number of CH_{3} groups $=12$

SECTION 4 (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;
Zero Marks : 0 In all other cases.
"PARAGRAPH-01"

An organic compound \mathbf{P} with molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ decolorizes bromine water and also shows positive iodoform test. \mathbf{P} on ozonolysis followed by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives \mathbf{Q} and \mathbf{R}. While compound \mathbf{Q} shows positive iodoform test, compound \mathbf{R} does not give positive iodoform test. \mathbf{Q} and \mathbf{R} on oxidation with pyridinium chlorochromate (PCC) followed by heating give \mathbf{S} and \mathbf{T}, respectively. Both \mathbf{S} and T show positive iodoform test. Complete copolymerization of 500 moles of \mathbf{Q} and 500 moles of \mathbf{R} gives one mole of a single acyclic copolymer \mathbf{U}. [Given, atomic mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$]
[:Q.14] Sum of number of oxygen atoms in \mathbf{S} and \mathbf{T} is \qquad .
[:ANS] 2

(P)
$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$

(Q)
(R)
gives + ve iodoform

(S)

+ ve iodoform
gives -ve iodoform

(T)
$\downarrow \Delta$ +ve iodoform

Sum of number of O -atoms in S and $\mathrm{T}=1+1=2$

"PARAGRAPH-01"

An organic compound \mathbf{P} with molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ decolorizes bromine water and also shows positive iodoform test. \mathbf{P} on ozonolysis followed by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives \mathbf{Q} and \mathbf{R}. While compound \mathbf{Q} shows positive iodoform test, compound \mathbf{R} does not give positive iodoform test. \mathbf{Q} and \mathbf{R} on oxidation with pyridinium chlorochromate (PCC) followed by heating give \mathbf{S} and \mathbf{T}, respectively. Both \mathbf{S} and \mathbf{T} show positive iodoform test.

Complete copolymerization of 500 moles of \mathbf{Q} and 500 moles of \mathbf{R} gives one mole of a single acyclic copolymer U.
[Given, atomic mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$]
[:Q.15] The molecular weight of \mathbf{U} is \qquad .
[:ANS] 93018
[:SOLN]

$$
\begin{gathered}
\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{KJ} \longrightarrow \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CH})_{6}\right]+\mathrm{I}_{2} \\
\downarrow \mathrm{ZnCl}_{2} \\
\mathrm{~K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}
\end{gathered}
$$

"PARAGRAPH -02"

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex \mathbf{P} is formed. In a strong acidic medium, the equilibrium shifts completely towards \mathbf{P}. Addition of zinc chloride to \mathbf{P} in a slightly acidic medium results in a sparingly soluble complex \mathbf{Q}.
[:Q.16] The number of moles of potassium iodide required to produce two moles of \mathbf{P} is \qquad .
[:ANS] 2

"PARAGRAPH-02"

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex \mathbf{P} is formed. In a strong acidic medium, the equilibrium shifts completely towards \mathbf{P}. Addition of zinc chloride to \mathbf{P} in a slightly acidic medium results in a sparingly soluble complex \mathbf{Q}.
[:Q.17] The number of zinc ions present in the molecular formula of \mathbf{Q} is \qquad .
[:ANS] 3
[:SOLN] $2 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CH})_{6}\right]+3 \mathrm{Z}_{\mathrm{n}} \mathrm{Cl}_{2} \longrightarrow \mathrm{~K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}+6 \mathrm{KCl}$

