## Tentors Eduservo

## JEE (ADVANCED) 2024 PAPER-2 [PAPER WITH SOLUTION]

## HELD ON SUNDAY 26TH MAY 2024

## MATHEMATICS

## SECTION-1 (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks :+3 If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -1 In all other cases.
[:Q.1] Considering only the principal values of the inverse trigonometric functions, the value of

$$
\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)-2 \cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)\right) \text { is }
$$

[:A] $\quad \frac{7}{24}$
[:B] $\quad \frac{-7}{24}$
[:C] $\frac{-5}{24}$
[:D] $\frac{5}{24}$
[:ANS] B
[:SOLN] $\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{4}{3}\right)\right)$

$$
=\frac{\frac{3}{4}-\frac{4}{3}}{1+1}=-\frac{7}{24}
$$

[:Q.2] Let $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: x \geq 0, y \geq 0, y^{2} \leq 4 x, y^{2} \leq 12-2 x\right.$, and $\left.3 y+\sqrt{8} x \leq 5 \sqrt{8}\right\}$. If the area of the region $S$ is $\alpha \sqrt{2}$, then $\alpha$ is equal to
[:A] $\frac{17}{2}$
[:B] $\frac{17}{3}$
[:C] $\frac{17}{4}$
[:D] $\frac{17}{5}$
[:ANS] B
[:SOLN]


$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{2}{3} \times 2 \times 2 \sqrt{2}=\frac{8 \sqrt{2}}{3} \\
& \mathrm{~A}_{2}=\frac{1}{2} \times 3 \times 2 \sqrt{2}=3 \sqrt{2}
\end{aligned}
$$

Total Area $=\mathrm{A}_{1}+\mathrm{A}_{2}=\alpha \sqrt{2}$

$$
\frac{8 \sqrt{2}}{3}+3 \sqrt{2}=\alpha \sqrt{2}
$$

$\alpha=\frac{8}{3}+3=\frac{17}{3}$
[:Q.3] Let $\mathrm{k} \in \mathbb{R}$. If $\lim _{x \rightarrow 0+}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=e^{6}$, then the value of k is
[:A] 1
[:B] 2
[:C] 3
[:D] 4
[:ANS] B
[:SOLN] $\lim _{x \rightarrow 0^{+}}(\sin (\sin k x)+\cos x+x)^{2 / x}=e^{6}$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0^{+}}\left(\frac{\sin (\sin k x)+\cos x+x-1}{x}\right) 2=6 \\
& \Rightarrow \lim _{x \rightarrow 0^{+}}(k \cos (\sin k x) \cdot \cos k x-\sin x+1)=3 \\
& \Rightarrow k+1=3 \quad \Rightarrow k=2
\end{aligned}
$$

[:Q.4] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \left(\frac{\pi}{x^{2}}\right), & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Then which of the following statements is TRUE?
[:A] $f(x)=0$ has infinitely many solutions in the interval

$$
\left[\frac{1}{10^{10}}, \infty\right) .
$$

[:B] $f(x)=0$ has no solutions in the interval $\left[\frac{1}{\pi}, \infty\right)$.
$[: C]$ The set of solutions of $f(x)=0$ in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
[:D] $f(x)=0$ has more than 25 solutions in the interval $\left(\frac{1}{\pi^{2}}, \frac{1}{\pi}\right)$.
[:ANS] D
[:SOLN] $f: R \rightarrow R$

$$
\begin{aligned}
& f(x)=x^{2} \sin \left(\frac{\pi}{x^{2}}\right)=0, x \neq 0 \\
& \sin \left(\frac{\pi}{x^{2}}\right)=0 \Rightarrow \frac{\pi}{x^{2}}=n \\
& x^{2}=\frac{1}{n} \\
& x= \pm \frac{1}{\sqrt{n}}, n \in N
\end{aligned}
$$

(A) $x=\frac{1}{\sqrt{n}}=\left[\frac{1}{10^{10}}, \infty\right) \Rightarrow \frac{1}{\sqrt{n}} \geq \frac{1}{100}$

$$
\Rightarrow \sqrt{\mathrm{n}} \leq 10^{10}
$$

$$
1 \leq \mathrm{n} \leq 10^{20}, \mathrm{n} \in \mathrm{~N} .
$$

finite value of $n$.
(B) $x=\frac{1}{\sqrt{n}}=\left[\frac{1}{\pi}, \infty\right) \Rightarrow \frac{1}{\sqrt{n}} \geq \frac{1}{\pi}$
$\sqrt{\mathrm{n}} \leq \pi$
$1 \leq \mathrm{n} \leq \pi^{2}$
$n=\{1,2,3, \ldots 10\}$
(C) $x=\left(0, \frac{1}{10^{n}}\right)=\frac{1}{\sqrt{n}} \Rightarrow 0<\frac{1}{\sqrt{n}}<\frac{1}{10^{10}}$.
$n>10^{20} \Rightarrow$ Infinite value.
(D) $x=\left(\frac{1}{\pi^{2}}, \frac{1}{\pi}\right)=\frac{1}{\sqrt{n}}$
$\frac{1}{\pi^{2}}<\frac{1}{\sqrt{n}}<\frac{1}{\pi} \Rightarrow \frac{1}{\pi^{4}}<\frac{1}{\mathrm{n}}<\frac{1}{\pi^{2}} \Rightarrow \pi^{2}<\mathrm{n}<\pi^{4} \quad \Rightarrow 9.86<\mathrm{n}<97.4$
$\mathrm{n}=\{10,11,12, \ldots . .97\}$

## SECTION 2 (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 mark;
choosing ONLY (B) will get +1 mark;
choosing ONLY (D) will get +1 mark;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks

$$
\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)\left(\log _{e} x\right)^{\alpha} \sin \left(\frac{1}{x^{2}}\right)}{x^{\alpha \beta}\left(\log _{e}(1+x)\right)^{\beta}}=0 .
$$

[:Q.5] Let $S$ be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that
Then which of the following is (are) correct?
[:A] $\quad(-1,3) \in S$
[:B] $\quad(-1,1) \in S$
$[: C] \quad(1,-1) \in S$
[:D] $(1,-2) \in S$
[:ANS] B,C
[:SOLN] $\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)(\ln x)^{\alpha} \sin \left(\frac{1}{x^{2}}\right)}{x^{\alpha} \beta(\ln (1+x))^{\beta}}=0$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow \infty}\left(\frac{\sin \frac{1}{\not{ }^{2}}}{\frac{1}{x^{2}}} \cdot\left(\sin x^{2}\right) \cdot \frac{(\ln x)^{\alpha}}{x^{(\alpha \beta+2)}\left(\ln (1+x)^{\beta}\right.}=0\right. \\
& \Rightarrow \lim _{x \rightarrow \infty} \frac{(\ln x)^{\alpha}}{x^{(\alpha \beta+2)}(\ln (1+x))^{\beta}}=0
\end{aligned}
$$

(A) $(\alpha, \beta)=(-1,3) \Rightarrow L=\lim _{x \rightarrow \infty} \frac{x}{(\ln x)(\ln (1+x))^{3}} \approx \infty$
(B) $(\alpha, \beta)=(-1,1) \Rightarrow L=\lim _{x \rightarrow \infty} \frac{1}{x \ln x \ln (1+x)}=0$
(C) $(\alpha, \beta)=(1,-1) \Rightarrow L=\lim _{x \rightarrow \infty} \frac{\ln x \ln (1+x)}{x}=0$
(D) $(\alpha, \beta)=(1,-2) \Rightarrow L=\lim _{x \rightarrow \infty} \ln x \ln (1+x) \approx \infty$
[:Q.6] A straight line drawn from the point $P(1,3,2)$, parallel to the line $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{1}$, intersects the plane $L_{1}: x-y+3 z=6$ at the point $Q$. Another straight line which passes through $Q$ and is perpendicular to the plane $L_{1}$ intersects the plane $L_{2}: 2 x-y+z=-4$ at the point R. Then which of the following statements is (are) TRUE?
[:A] The length of the line segment $P Q$ is $\sqrt{6}$
[:B] The coordinates of $R$ are $(1,6,3)$
[:C] The centroid of the triangle PQR is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
[:D] The perimeter of the triangle PQR is $\sqrt{2}+\sqrt{6}+\sqrt{11}$
[:ANS] A,C
[:SOLN] \# P(1,3,2)
\# $Q(1+\lambda, 3+2 \lambda, 2+\lambda)$ lies on the plane $x-y+3 z=6$
$\Rightarrow 1+\lambda-3-2 \lambda+6+3 \lambda=6$
$\Rightarrow \lambda=1$
$\Rightarrow Q(2,5,3)$
\# $R(2+\lambda, 5-\lambda, 3+3 \lambda)$ lies on $2 x-y+z=-4$
$\Rightarrow 4+2 \lambda-5+\lambda+3+3 \lambda=-4$
$\Rightarrow \lambda=-1$
$\Rightarrow \mathrm{R}(1,6,0)$
\# $P Q=\sqrt{6}$
$\# P Q+Q R+R P=\sqrt{6}+\sqrt{11}+\sqrt{13}$
\# centroid of $\triangle \mathrm{PQR}=\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
[:Q.7] Let $A_{1}, B_{1}, C_{1}$ be three points in the $x$-y-plane. Suppose that the lines $A_{1} C_{1}$ and $B_{1} C_{1}$ are tangents to the curve $y^{2}=8 x$ at $A_{1}$ and $B_{1}$, respectively. If $O=(0,0)$ and $C_{1}=(-4,0)$, then which of the following statements is (are) TRUE?
[:A] The length of the line segment $O A_{1}$ is $4 \sqrt{3}$
[:B] The length of the line segment $A_{1} B_{1}$ is 16
[:C] The orthocenter of the triangle $A_{1} B_{1} C_{1}$ is $(0,0)$
[:D] The orthocenter of the triangle $A_{1} B_{1} C_{1}$ is $(1,0)$
[:ANS] A,C
[:SOLN]


Tangent at $A(t):$ ty $=\left(x+2 t^{2}\right)$ Passes $(-4,0)$
$\Rightarrow-4+2 t^{2}=0 \Rightarrow t^{2}=2$.

$$
\begin{aligned}
& \text { \# } A_{1}(4,4 \sqrt{2}), B_{1}(4,-4 \sqrt{2}) \\
& \# O_{1}=O B_{1}=4 \sqrt{3} \\
& \# A_{1} B_{1}=8 \sqrt{2} \\
& \text { \# Orthocentre of } \Delta A_{1} B_{1} C_{1}: H(x, 0) \text { : } \\
& E q^{n} \text { of } A_{1} H: y-4 \sqrt{2}=\sqrt{2}(x-4) \\
& y=0 \Rightarrow x=0 \Rightarrow H=(0,0)
\end{aligned}
$$

## SECTION-3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
[:Q.8] Let $f: R \rightarrow R$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in R$, and $g: R \rightarrow(0, \infty)$ be a function such that If $g(x+y)=g(x) g(y)$ for all $x, y \in R$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is $\qquad$ .
[:ANS] 51
[:SOLN] Let $f(x)=k x$, as $f\left(-\frac{3}{5}\right)=12$
$\therefore \frac{-3 \mathrm{k}}{5}=12 \quad \therefore \mathrm{k}=-20$
Let, $\mathrm{g}(\mathrm{x})=\mathrm{a}^{\mathrm{x}}$, given that $\mathrm{g}\left(-\frac{1}{3}\right)=2$

$$
a^{\frac{-1}{3}}=2 \Rightarrow a=\frac{1}{8} \quad \therefore f(x)=-20 x, g(x)=\left(\frac{1}{8}\right)^{x}
$$

From Question : $\left\{\frac{-20}{4}+\left(\frac{1}{8}\right)^{-2}-8\right\} \times\left(\frac{1}{8}\right)^{0}=51$
[:Q.9] A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For $i=1,2,3$, let $W_{i}, G_{i}$, and $B_{i}$ denote the events that the ball drawn in the $\mathrm{i}^{\text {th }}$ draw is a white ball, green ball, and blue ball, respectively. If the probability $P\left(W_{1} \cap G_{2} \cap B_{3}\right)=\frac{2}{5 N}$ and the conditional probability $P\left(B_{3} \mid W_{1} \cap G_{2}\right)=\frac{2}{9}$, then $N$ equals $\qquad$ .
[:ANS] 11
[:SOLN] $P\left(B_{3} \mid W_{1} \cap G_{2}\right)=\frac{2}{9}$

$$
\begin{aligned}
& \Rightarrow \frac{P\left(B_{3} \cap W_{1} \cap G_{2}\right)}{P\left(W_{1} \cap G_{2}\right)}=\frac{2}{9} \\
& \Rightarrow \frac{\frac{2}{5 N}}{\frac{3}{N} \times \frac{6}{N-1}}=\frac{2}{9}\left(\because P\left(W_{1} \cap G_{2} \cap B_{3}\right)=\frac{2}{5 N}\right) \\
& \Rightarrow \frac{(N-1)}{3 \times 3 \times 5}=\frac{2}{9} \\
& N=11
\end{aligned}
$$

[:Q.10] Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^{2}-x+3\right)}+\frac{2}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^{2}-x+3\right)} .
$$

Then the number
of solutions of $f(x)=0$ in $\mathbb{R}$ is $\qquad$ .
[:ANS] 1
[:SOLN] $f(x)=0$

$$
\begin{aligned}
& \Rightarrow \frac{\sin x+2}{e^{\pi x}\left(x^{2}-x+3\right)} \cdot\left(x^{2023}+2024 x+2025\right)=0 \\
& \Rightarrow x^{2023}+2024 x+2025=0 \quad\left(\therefore \sin x+2>0 \text { and } e^{\pi x}\left(x^{2}-x+3\right)>0 \forall x \in R\right)
\end{aligned}
$$

Let $\mathrm{g}(\mathrm{x})=\mathrm{x}^{2023}+2024 \mathrm{x}+2025$
$\therefore g^{\prime}(x)=2023 x^{2022}+2024>0 \forall x \in R$.
$\therefore g(x)$ is strictly increase polynomial of odd degree.
$\therefore \mathrm{g}(\mathrm{x})=0$ has only one real solution.
[:Q.11] Let $\vec{p}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers $\alpha, \beta$ and $\gamma$, we have $15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q})$, then the value of $\gamma$ is $\qquad$ .
[:ANS] 2
[:SOLN] $(15 \hat{i}+10 \hat{j}+6 k) \cdot(\vec{p} \times \vec{q})=0+0+\gamma(\vec{P} \times \overrightarrow{\mathrm{q}})^{2}$
L.H.S $=\left|\begin{array}{ccc}15 & 10 & 6 \\ 2 & 1 & 3 \\ 1 & -1 & 1\end{array}\right|=60+10-18=52$
R.H.S $=\gamma\left|\begin{array}{ccc}i & j & k \\ 2 & 1 & 3 \\ 1 & -1 & 1\end{array}\right|^{2}=\gamma(16+1+9)=\gamma .26$

So $\gamma .26=52$
[:Q.12] A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0,-\alpha)$ to the parabola $x^{2}=-4 a y$, where $a>0$. Let $L$ be the line passing through $(0,-\alpha)$ and parallel to the directrix of the parabola. Suppose that $L$ intersects the parabola at two points $A$ and $B$. Let $r$ denote the length of the latus rectum and $s$ denote the square of the length of the line segment $A B$. If $r: s=1: 16$, then the value of $24 a$ is $\qquad$ .
[:ANS] 12
[:SOLN] Equation of normal to $x^{2}=-4 a y$ is : $x+y t+2 a t+a t^{3}=0$
Passing through $(0,-\alpha) \Rightarrow-\alpha t+2 a t+a t^{3}=0 \Rightarrow \alpha=2 a+a t^{2}$
Slope of normal $=\frac{-1}{\mathrm{t}}=\frac{1}{\sqrt{6}} \quad \therefore \mathrm{t}=-\sqrt{6} \quad \therefore \alpha=8 \mathrm{a}$


For $A \& B, y=-8 a \quad \therefore x= \pm 4 \sqrt{2} a$
$\therefore|A B|=8 \sqrt{2} a,|L R|=4 a$
given $\frac{|L R|}{|A B|^{2}}=\frac{4 a}{128 a^{2}}=\frac{1}{16} \Rightarrow a=\frac{1}{2} \quad \therefore 24 a=12$
[:Q.13] Let

$$
f(t)=\left\{\begin{array}{cc}
(-1)^{n+1} 2, & \text { if } t=2 n-1, n \in \mathbb{N} \\
\frac{(2 n+1-t)}{2} f(2 n-1)+\frac{(t-(2 n-1))}{2} f(2 n+1), & \text { if } 2 n-1<t<2 n+1, n \in \mathbb{N}
\end{array}\right.
$$

$$
g(x)=\int_{1}^{x} f(t) d t, x \in(1, \infty)
$$

Let $\alpha$ denote the of solutions of the equation $g(x)=0$ in the interval $(1,8]$ and $\beta=\lim _{x \rightarrow 1+} \frac{g(x)}{x-1}$. Then the value of $\alpha+\beta$ is equal to $\qquad$ .
[:ANS] 5
[:SOLN] $f(t)=\left\{\begin{array}{c}(-1)^{n+1} \cdot 2, t=2 n-1, n \in N . \\ \frac{2 n+1-t}{2} \cdot(-1)^{n+1} \cdot 2+\frac{k-(2 n-1)}{2} \cdot(-1)^{n+2} \cdot 2,2 n-1<t<2 n+1, n \in N\end{array}\right.$

$$
=\left\{\begin{array}{c}
(-1)^{n+1} \cdot 2, t=2 n-1, n \in N \\
(-1)^{n+1}(4 n-2 t), 2 n-1<t<2 n+1, n \in N
\end{array}\right.
$$



$$
\begin{aligned}
& \text { Clearly, } g(x)=\int_{1}^{x} f(t) d t=0 \\
& \Rightarrow x=3,5 \text { or } 7 \\
& \Rightarrow \alpha=3 \\
& \beta=\lim _{x \rightarrow 1^{+}} \frac{g(x)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{g^{\prime}(x)}{1}=g^{\prime}(1) \quad \text { (L'hopital's Rule) } \\
& =f(x)=2 \\
& \therefore \alpha+\beta=5
\end{aligned}
$$

## SECTION-4 (Maximum Marks : 12)

- This section contains TWO (02) questions.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct numerical value is entered in the designated place;
Zero Marks : 0 In all other cases.

## PARAGRAPH " 1 "

Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:
i. $\quad R$ has exactly 6 elements.
ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and
$Z=\{R \in X: R$ is a function from $S$ to $S\}$. Let $n(A)$ denote the number of elements in a set $A$.
(There are two questions based on PARAGRAPH "I", the question given below is one of them)
[:Q.14] If $n(X)={ }^{m} C_{6}$, then the value of $m$ is $\qquad$ .

## PARAGRAPH " 1 "

Let $S=\{1,2,3,4,5,6\}$ and $X$ be the set of all relations $R$ from $S$ to $S$ that satisfy both the following properties:
i. $\quad R$ has exactly 6 elements.
ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$ : The range of $R$ has exactly one element $\}$ and
$Z=\{R \in X: R$ is a function from $S$ to $S\}$. Let $n(A)$ denote the number of elements in a set $A$. (There are two questions based on PARAGRAPH "I", the question given below is one of them)
[:ANS] 20
[:SOLN]

| a | b |
| :---: | :---: |
| 1 | $3,4,5,6$ |
| 2 | $4,5,6$ |
| 3 | $1,5,6$ |
| 4 | $1,2,6$ |
| 5 | $1,2,3$ |
| 6 | $1,2,3,4$ |

So total 20 pairs satisfy the condition $|a-b| \geq 2$,
Out of which $R$ can have any 6 pairs.
So no. of possible relations $R={ }^{20} \mathrm{C}_{6}$
$\therefore \mathrm{n}(\mathrm{x})={ }^{20} \mathrm{C}_{6}={ }^{20} \mathrm{C}_{6}$
$\Rightarrow \mathrm{m}=20$
[:Q.15] If the value of $n(Y)+n(Z)$ is $k^{2}$, then $|k|$ is $\qquad$ .
[:ANS] 36
[:SOLN] $\because$ each b is related to only 3 or 4 elements in S , so the range of R cannot have exactly one element.
$\therefore \mathrm{n}(\mathrm{y})=0$
For $R$ to be a function from $S$ to $S$, each element in $S$ must be related to one and only one element in S .

So $n(z)=4 \times 3 \times 3 \times 3 \times 3 \times 4$
(as $1 \& 6$ have 4 options; 2, 3, 4, 5 have 3 options each)
$\therefore \quad \mathrm{n}(\mathrm{y})+\mathrm{n}(\mathrm{z})=0+36^{2}=\mathrm{k}^{2}$
$\Rightarrow|\mathrm{k}|=36$

## PARAGRAPH "II"

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $\mathrm{f}(\mathrm{x})=\sin ^{2} \mathrm{x}$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be $g(x)=\sqrt{\frac{\pi x}{2}-x^{2}}$.
the function defined by
(There are two questions based on PARAGRAPH "II", the question given below is one of them)
[:Q.16] The value of
 is $\qquad$ .
[:ANS] 0
[:SOLN] $\quad I=\int_{0}^{\pi / 2} f(x) \cdot g(x) d x$

$$
\begin{aligned}
& I=\int_{0}^{\pi / 2} \sin ^{2} x \times \sqrt{\frac{\pi x}{2}-x^{2}} d x \text {, Applying P-IV } \\
& I=\int_{0}^{\pi / 2} \cos ^{2} x \times \sqrt{\frac{\pi x}{2}-x^{2}} d x\left[\text { as } g\left(\frac{\pi}{2}-x\right)=g(x)\right]
\end{aligned}
$$

$$
2 \mathrm{l}=\int_{0}^{\pi / 2} \sqrt{\frac{\pi \mathrm{x}}{2}-\mathrm{x}^{2}} \mathrm{dx}
$$



Area $=\pi \cdot \frac{r^{2}}{2}$

$$
\begin{aligned}
& =\pi \cdot \frac{\left(\frac{\pi}{4}\right)^{2}}{2}=\frac{\pi^{3}}{32} \\
& 2 I=\int_{0}^{\pi / 2} g(x) d x=0
\end{aligned}
$$

## PARAGRAPH "II"

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^{2} x$ and let $g:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be $g(x)=\sqrt{\frac{\pi x}{2}-x^{2}}$.
(There are two questions based on PARAGRAPH "II", the question given below is one of them)
[:Q.17] The value of $\frac{16}{\pi^{3}} \int_{0}^{2} f(x) g(x) d x$ is $\qquad$ .
[:ANS] 0.25
[:SOLN] $\quad \frac{16}{\pi^{3}} \times \frac{\pi^{3}}{64}=\frac{1}{4}=0.25$

