Mentors[®] Eduserv™

This booklet contains 24 printed pages.

PAPER-1 : PHYSICS, CHEMISTRY & MATHEMATICS

Do not open this Test Booklet until you are asked to do so.

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

- Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
 The Annual Chapter is beneficial this Test Decided With a new directed to energy the Test Decided to the set.
- 2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
- 3. The test is of 3 hours duration.
- 4. The Test Booklet consists of 90 questions. The maximum marks are 360.
- 5. There are three parts in the question paper A, B, C consisting of **Physics, Chemistry** and **Mathematics** and having 30 questions in each part of equal weightage. Each question is allotted **4 (four)** marks for correct response.
- **6.** Candidates will be awarded marks as stated above in instruction No. 5 for correct response of each question. 1/4 (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 6 above.
- 8. Use *Blue/Black Ball Point pen only* for writing particulars/marking responses on *Side-1* and *Side-2* of the Answer Sheet. *Use of pencil is strictly prohibited.*
- **9.** No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination room/hall.
- **10.** Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is give at the bottom of each page and in **three** pages (Pages **21 23**) at the end of the booklet.
- 11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. *However, the candidates are allowed to take away this Test Booklet with them.*
- 12. The CODE for the Booklet is C. Make sure that the CODE printed on Side-2 of the Answer Sheet and also tally the serial number of the Test Booklet and Answer Sheet are the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.

13. Do not fold or make any stray marks on the Answer Sheet.

Name of the Candidate (in Capital Letters):						
Roll Number	: In figures					
	: in words					
Examination Centre Nu	mber :					
Name of Examination Centre (in Capital letters) :						
Candidate's Signature :		1. Invigilator's Signature :				
		2. Invigilator's Signature :				

Mentors Eduserv : Plot No. : 136/137, Parus Lok Complex, Boring Road Crossing, Patna-1, Ph. No. : 9569668800 | 7544015993/4/6/7

Test Booklet Code

[2] JEE MAIN 2018 (Code-A) (08-04-18) **PART-B: CHEMISTRY** 31. The ratio of mass percent of C and H of an organic compound (C_xH_yO₇) is 6 : 1. If one molecule of the above compound $(C_XH_YO_Z)$ contains half as much oxygen as required to burn one molecule of compound C_XH_Y completely to CO_2 and H_2O . The empirical formula of compound $C_XH_YO_Z$ is : (3) C₃H₄O₂ (2) C₂H₄O (4) $C_{2}H_{4}O_{3}$ (1) $C_3 H_6 O_3$ Ans. (4) **Sol.** $\frac{m_{c}}{m_{H}} = \frac{6}{1} = \frac{12X}{Y}$ $\Rightarrow \frac{X}{Y} = \frac{1}{2}$ \Rightarrow v = 2X 1 molecule of $C_x H_y O_z$ has $Z = \frac{1}{2}\left(X + \frac{Y}{4}\right) \times 2$ $Z = X + \frac{Y}{4}$ $Z = X + \frac{X}{2}$ $Z = \frac{3X}{2}$ \Rightarrow (C_xH_yO_z) = $\left(C_x H_{2x} O_{3x} \right) = C_2 H_4 O_3$ 32. Which type of 'defect' has the presence of cations in the interstitial sites ? (1) Schottky defect Vacancy defect (2) (3) Frenkel defect Metal deficiency defect (4) Ans. (3) **Sol.** Frenkel defect is self-interstitial defect in which few cations are present at interstitial space. According to molecular orbital theory which of the following will not be a viable molecule ? 33. (1) He_{2}^{2+} (2) He_{2}^{+} (3) H₂⁻ (4) H_2^{2-} Ans. (4) **Sol.** For H_2^{2-} , total electrons = 4 $\sigma(1s^2)\sigma^*(1s^2)$.: Bond order = 0

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

[4]				JEE MAIN 2018 (Co	ode-A) (08-04-18)
37.	An aqueous solution co of HS ⁻ from H ₂ S is 1.0 ions in aqueous solution	ontains 0.10 M H ₂ S and 0.20 $\times 10^{-7}$ and that of S ^{2–} from I on is :	M HCI. If the eq HS^- ions is 1.2 ×	uilibrium constants 10 ^{–13} then the con	for the formation centration of S ^{2–}
	(1) 5 × 10 ⁻⁸	(2) 3 × 10 ⁻²⁰	(3) 6 × 10 ⁻²¹	(4)	5 × 10 ^{–19}
Ans.	(2)				
Sol.	$\begin{array}{ccc} H_2 S & \longrightarrow & 2H^+ \\ 0.10 & & 0.20 \\ 0.10 - x & & 0.20 + 2 \end{array}$	+ S^{2-} ; $K = K_1 \cdot K_2$ 0 x x			
	$K = \frac{[H^+]^2[S^{2-}]}{[H_2S]} = \frac{(0.20)}{(0.10)}$	$\frac{2}{2} \cdot \mathbf{x}$			
	$1.2 \times 10^{-20} = (0.4).x$				
	$x = \frac{1.2}{0.4} \times 10^{-20} = 3 \times 10$	-20			
	$[S^{-2}] = 3 \times 10^{-20} M$				
38.	An aqueous solution of Na ₂ SO ₄ is added, BaSO BaSO ₄ is 1×10^{-10} . W	ontains an unknown conce O ₄ just begins to precipitate. hat is the original concentra	ntration of Ba ²⁺ The final volum ition of Ba ²⁺ ?	. When 50 mL of a e is 500 mL. The sol	1 M solution of ubility product of
	(1) 5 × 10 ⁻⁹ M	(2) 2 × 10 ⁻⁹ M	(3) 1.1 × 10⁻	⁻⁹ M (4)	1.0 × 10 ^{–10} M
Ans.	(3)				
Sol.	$Ba^{2+} + \underset{(50\text{mL, 1M})}{Na_2SO_4} \longrightarrow B$	$aSO_4 \downarrow +2Na^+$			
	For ppt of BaSO ₄ to st	art			
	$\mathbf{Q}_{i} > \mathbf{K}_{sp}$				
	[Ba ²⁺][SO ₄ ^{2–}] > 1 × 10) –10			
	$[Ba^{2^+}]_f \times \frac{50 \times 1}{500} > 1 \times 10^{-10}$	10			
	$[Ba^{2+}]_{f} > 10^{-9}$				
	For Ba ²⁺				
	$V_i M_i = V_f M_f$				
	$450 \times M_{i} = 500 \times 10^{-9}$				
	$M_{i} = \frac{500}{450} \times 10^{-9} M = \frac{10}{9}$	×10 ⁻⁹			
	$[Ba^{2+}]_i = 1.1 \times 10^{-9} M$				

. Mentors® Eduserv™ JEE MAIN 2018 (Code-A) (08-04-18) [5] At 518°C, the rate of decomposition of a sample of gaseous acetaldehyde, initially at a pressure of 363 39. Torr, was 1.00 Torr s⁻¹ when 5% had reacted and 0.5 Torr s⁻¹ when 33% had reacted. The order of the reaction is : (1) 2 (2) 3 (3) 1 (4) 0 Ans. (1) Sol. Let Rate = KPⁿ P_i = 363 torr, when 5% reacted ; P_1 = 363 × 0.95 torr when 33% reacted ; $P_2 = 363 \times 0.67$ torr $\frac{\text{Rate1}}{\text{Rate2}} = \left(\frac{\text{P}_1}{\text{P}_2}\right)^n$ $\frac{1}{0.5} = \left(\frac{363 \times 0.95}{363 \times 0.67}\right)^n$ $2 = (1.417)^n$ n = 2 40. How long (approximate) should water be electrolysed by passing through 100 amperes current so that the oxygen released can completely burn 27.66 g of diborane ? (Atomic weight of B = 10.8 u) (1) 6.4 hours (2) 0.8 hours (3) 3.2 hours (4) 1.6 hours Ans. (3) **Sol.** $B_2H_6 + 3O_2 \longrightarrow B_2O_3 + 3H_2O_3$ $m_{_{\!B_2\!H_{\!\scriptscriptstyle B}}}=27.66$ $n_{B_2H_6} = \frac{27.66}{276} = 1 \text{ mole}$ $n_{O_2} = 3 \times n_{B_2H_6} = 3$ mole $2H_2O \longrightarrow 2H_2 + O_2(g)$ (3 mole) $n_{H_{2}O} = 2 \times n_{O_2} = 6$ mole Eq. $H_2O = Eq.$ charge $6 \times 2 = \frac{100 \times t}{96500}$ t = 965 × 12 sec = 3.21 Hrs. 41. The recommended concentration of fluoride ion in drinking water is up to 1 ppm as fluoride ion is required to make teeth enamel harder by converting [3Ca₃(PO₄)₂.Ca(OH)₂] to : (2) [3(CaF₂).Ca(OH)₂] (3) [3Ca₃(PO₄)₂.CaF₂] (4) [3{Ca(OH)₂}.CaF₂] (1) [CaF₂] Ans. (3) Sol. During hardening of teeth enamel [3 Ca₃(PO₄)₂.Ca(OH)₂] is converted into [3 Ca₃(PO₄)₃.CaF₂]

[6]					JEE MAIN 2	018	(Code-A) (08-04-18)
42.	Which of the following compounds contain(s) no covalent bond(s)?						
	KCI, PH ₃ , O ₂ , B ₂ H ₆ , H ₂ S	SO ₄					
	(1) KCI, B ₂ H ₆ , PH ₃	(2) K	KCI, H ₂ SO ₄	(3)	KCI	(4)	KCI,B ₂ H ₆
Ans.	(3)						
Sol.	KCI is an ionic compound	d.					
43.	Which of the following an	e Lewi	is acids?				
	(1) PH_3 and BCI_3	(2) A	AICI ₃ and SiCI ₄	(3)	PH_3 and SiCl ₄	(4)	BCI_{3} and $AICI_{3}$
Ans.	(4)						
Sol.	BCl_3 and AICl_3 has electronic definition of the second seco	ron def	ficient central atom s	so the	ey are Lewis acid.		
44.	Total number of lone pair	r of ele	ectrons in I_3^- ion is :				
	(1) 3	(2) 6	3	(3)	9	(4)	12
Ans.	(3)	. ,		()		. ,	
Sol.							
45.	Which of the following sa	alts is t	the most basic in aqu	ieous	solution?		
_	(1) AI(CN) ₃	(2) C	CH3COOK	(3)	FeCl ₃	(4)	Pb(CH ₃ COO) ₂
Ans.	(2)						
501.	CH ₃ COOK is the sait of v	weak a	acid and strong base.	•			
	$CH_3COOK + H_2O$	≐CH₃	COOH + KOH				
46.	Hydrogen peroxide oxidi	ises [F	e(CN) ₆] ^{4–} to [Fe(CN	I) ₆] ^{3_}	in acidic medium but	redu	ces [Fe(CN) ₆] ^{3–} to
	$[Fe(CN)_6]^{4-}$ in alkaline m	edium	. The other products	form	ed are respectively:	~ .	
	(1) $(H_2O + O_2)$ and H_2O			(2)	$(H_2O + O_2)$ and $(H_2O + O_2)$	+ OF	1-)
Anc	(3) $H_2 U$ and $(H_2 U + U_2)$			(4)	H_2O and $(H_2O + OH^2)$		
Sol	() In acidic medium						
		1.1+		. ~	$(\cap A = O)$	000	•
	$[Fe(UN)_6] + H_2U_2 + 2I_{(0.A)}$	п —	—>[רפ(טא) ₆] ⁻ + 2F	1 ₂ ∪	(U.A Uxidising a	igen	<i>י</i> י
	In alkaline medium :						
	$2[Fe(CN)_6]^{3-} + H_2O_2 + K_{(R,A)}^{3-}$	2OH⁻	$\longrightarrow 2[Fe(CN)_6]^{4-}$	+ 21	$H_2O + O_2$ (R.A. = 1	Redu	ucing agent)

. Mentors® Eduserv™

JEE MAIN 2018 (Code-A) (08-04-18)

47.	The oxidation states of	:				
	Cr in [Cr(H ₂ O) ₂]Cl ₂ , [Cr(C ₂ H ₂) ₂] and K ₂ [Cr(CN) ₂ (O) ₂ (O ₂)NH ₂] respectively are :					
	(1) +3. +4 and +6	(2) +3. –2 and +4	(3)	+3. 0. and +6	(4) +3.0 and +4	
Ans.	(3)		()	, ,		
,	(•)					
Sol.	$\left\lfloor \overset{+3}{\operatorname{Cr}}(H_2O)_6 \right\rfloor Cl_3 \Longrightarrow +3$					
	$\left[\overset{o}{\operatorname{Cr}} (C_{6}H_{6})_{2} \right] \Rightarrow O$					
	$K_{2}\left[\overset{+6}{Cr}(CN)_{2}(O_{2})_{2}(O_{2})^{-1} \right]$	$^{2}(\mathrm{NH}_{3}) \bigg] \Rightarrow +6$				
48.	The compound that doe	es not produce nitrogen gas	by th	e thermal decomposition	on is :	
	(1) $Ba(N_3)_2$	(2) $(NH_4)_2Cr_2O_7$	(3)	NH ₄ NO ₂	(4) $(NH_{4})_{2}SO_{4}$	
Ans.	(4)			-		
Sol.	$Ba(N_3)_2 \xrightarrow{\Delta} Ba + 3$	N ₂	(NI	$H_4)_2Cr_2O_7 \xrightarrow{\Delta} N_2 +$	$2H_2O + Cr_2O_3$	
	$(NH_4)_2SO_4 \xrightarrow{\Lambda} NH_4$	$_3 + H_2 SO_4$	N⊦	$I_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O_2$	C	
49.	When metal 'M' is treated with NaOH, a white gelatinous precipitate 'X' is obtained, which is soluble excess of NaOH. Compound 'X' when heated strongly gives an oxide which is used in chromatography an adsorbent. The metal 'X' is :			ined, which is soluble in ed in chromatography as		
	(1) Zn	(2) Ca	(3)	AI	(4) Fe	
Ans.	(3)					
Sol.	AI \longrightarrow AI(OH) ₃ \searrow Gelatinous white ppt AI_2O_3 (Which is used chromatograph	↓ NaOH Na[Al(OH),] Soluble Complex				
50	Consider the following (reaction and statements ·				
	$[Co(NH_2)_4Br_2]^++Br^- \rightarrow$	$[Co(NH_2)_2Br_2] + NH_2$				
	(1) Two isomers are produced if the reactant complex ion is a cis-isomer					
	(II) Two isomers are produced if the reactant complex ion is a trans-isomer					
	(III) Only one isomer is produced if the reactant complex ion is a trans-isomer					
	(IV) Only one isomer is produced if the reactant complex ion is a cis-isomer					
	The correct statements are :					
	(1) (I) and (II)	(2) (I) and (III)	(3)	(III) and (IV)	(4) (II) and (IV)	
Ans.	(2)			·		

Mentors[®] Eduserv[™]

JEE MAIN 2018 (Code-A) (08-04-18)

Mentors[®] Eduserv[™]

JEE MAIN 2018 (Code-A) (08-04-18)

[11]

Mentors[®] Eduserv[®]

Mentors[®] Eduserv[™]

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7